
Moving Up: C And C++
by Dave Jewell

In this final Moving Up article, Dave looks at the likelihood of
‘culture-shock’ for C/C++ developers moving across to Delphi!

Delphi For C Programmers
For starters, if you’re one of those
programmers who spends ages
deliberating over which memory
model to use – forget it!

Borland’s Pascal dialect only
gives you one memory model. All
pointers within Delphi are ‘far’
while global variables (see my
comments later) are always ‘near’,
being stored as part of the
program’s DGROUP segment. That
said, Object Pascal has a nice
memory sub-allocator scheme
which means you don’t often have
to mess around with GlobalAlloc,
GlobalLock and so on.

A Pascal program is split up into
one or more units (again, see later)
and all routines exported from a
unit are ‘far’ so that they can be
called from another segment.
When programming using Object
Pascal, you’ll find that you very
rarely have to worry about
whether or not a routine is near or
far, a case in point being the
ExitProc mechanism which will
only work with far routines.

One significant problem is the
lack of huge pointers, making it
difficult to manipulate objects
larger than 64Kb in size. Obviously,
this won’t be an issue once the ‘flat
model’ 32-bit version of Delphi
arrives, but until then, you’ll have
to make use of the SelectorInc
variable (see the on-line help) to
manually bump a pointer by 64Kb
at a time. Contrary to early
versions of the Delphi documenta-
tion, it’s perfectly possible to use
the _hread and _hwrite Windows
API routines from within Object
Pascal, so there are no problems
with reading and writing objects
that are very large, such as high
resolution bitmaps, .WAV files, etc.

Object Pascal has a host of nice
language features to lure the

dedicated C/C++ enthusiast. It
supports sets, making it very easy
to test a variable against a number
of possible values in one go. Nested
routines make it easy to split up a
large routine into a number of
smaller entities in a manageable
way. ‘Child’ routines have access
to the parent’s formal parameters
and local variables eliminating a lot
of unnecessary parameter passing.

The Delphi development system
also uses ‘smart linking’, some-
thing which C++ vendors repeat-
edly tell me is in their product, but
which never quite works as
expected. Smart linking means that
un-referenced routines, variables
and string constants are quietly
discarded at link time, thus
minimising the size of the resulting
.EXE file.

You might think that Delphi
executables are pretty hefty at
around 150Kb minimum, but you
need to remember that these
overheads arise from the OOP
oriented VCL library – they’re
nothing to do with the underlying
compiler implementation. As an
example, it’s perfectly possible to
write a ‘straight’ (non-OOP)
version of the infamous “Hello
World” program using Delphi. Said
program weighs in at under 2Kb!

A nice feature of Object Pascal is
the concept of units. C/C++ pro-
grammers will be familiar with the
idea of dividing up a large program
into a number of separate source
files, each of which implements a
certain category of routines. For
example, you might choose to put
a number of data compression rou-
tines into a file called COMPRESS.C,
or you might want to place buff-
ered I/O classes into BUFF.CPP.
Either way, it’s entirely your
responsibility to decide which
routines and variables are

“exported” by each source file. If
you don’t want a routine or
variable to be accessible from
outside the file where it’s defined,
you have to make it static. For
each routine that you do want to
make available to the program as a
whole, you need to add it to a
header file which is then included
by other interested source
modules.

Yes, it works, but it’s not terribly
convenient for one simple reason:
the idea of modular, black-box
programming isn’t built into the C
language – it’s up to you to create
your own black boxes by messing
around with header files and using
the static keyword.

Pascal is far superior (in my
opinion!) in this respect. An Object
Pascal program is made up of one
or more units. Each unit is a
separately compiled black box
which exports routines and
variables to the host program or to
other units. A unit can also export
type definitions and constant
values, something that a C/C++
programmer would use a header
file for. Internally, a Pascal unit is
rigidly divided into two distinct
parts: the interface part and the
implementation. Anything that’s
defined in the interface is exported
for use by other units, whereas the
implementation part is completely
private.

There are a couple of big advan-
tages here. Firstly, you don’t have
to keep mucking about with
separate header files and secondly,
you can see at a glance which parts
of a source file are exported and
which parts form the private imple-
mentation. The VCL library is
heavily based around the concept
of units, as should be your own
applications – where a language
supports modular programming

September 1995 The Delphi Magazine 27

practices and information hiding,
it’s a good idea to exploit these
capabilities to the full.

A common question asked by
C/C++ programmers moving to
Delphi is “How do I create a global
variable?” Put simply, you don’t!
The Pascal language has no
concept of global variables, and
with good reason! In a language
which supports the free and easy
use of global variables (such as C
or C++), globals tend to be used
indiscriminately by inexperienced
programmers. Global variables
introduce potential ‘side-effects’
into every procedure call and make
it very difficult to understand large
and complex programs with which
you are unfamiliar. Globals go
against the whole spirit of modular,
structured programming.

If you really need a global
variable, the correct approach is to
define it inside a Pascal unit,
adding it to the interface part of the
unit. Only those source modules
which Use the unit containing the
variable will be able to see it: the
variable doesn’t automatically
become available to all parts of the
program.

This approach encourages you
to think about which parts of your
program actually need to use that
variable and which don’t. You’ll
often find that, given a little
thought, a variable doesn’t need to
be exported from a unit at all.

Incidentally, you might think
that the variables defined in the
SYSTEM unit (hInstance, IOResult,
etc) are ‘true’ variables because
they appear to be available
anywhere in a Delphi application.
This is because the SYSTEM unit is
special: it’s implicitly included in
the Uses clause of every other unit
and is automatically available to
the main program module.

Another useful aspect of units is
the ability to perform hidden
initialisation and de-initialisation
(for want of a better word) of your
black box routines. For example,
suppose you have a palette tweak-
ing unit which needs to figure out
various system parameters such as
size of the palette, number of
colours supported and so forth.
With Pascal, you can arrange for

your initialisation code to be called
before the main program starts
executing. Also, if you make use of
Pascal’s ExitProc facility, (see the
Delphi on-line help for details of
how this works), you can arrange
for each unit to get a ‘good-bye
kiss’ when your program is
unloaded. This is very useful for
deleting custom bitmaps, brushes,
pens and the like.

Delphi For C++ Programmers
Although Delphi’s OOP capabilities
are very respectable, it’s got to be
admitted that as far as ‘high-end
OOP’ is concerned, Object Pascal is
no match for the latest C++
dialects. For example, there’s no
template capability, no operator
overloading and multiple inheri-
tance (the ability to derive from
more than one parent class)
doesn’t exist. Speaking personally,
I understand the benefits of multi-
ple inheritance, but I’ve just never
felt the need for it myself and I
know that quite a lot of other
developers (C++ developers
included!) feel the same way.

To some extent this reflects the
different mindset that program-
mers adopt when using different
languages. If something is alien to
the philosophy of a particular
language, then it’s unlikely that
you’ll miss its absence. A good
example of this is pre-processor
macros. Virtually all C/C++
developers rely on macro pre-
processing in one way or another,
for example the message cracker
macros which are built into
WINDOWSX.H and allow you to
write code which is portable
between the Win16 and Win32 API
sets. With Pascal, the concept of
macro pre-processing just doesn’t
exist; there isn’t even a pre-
processor phase in the compiler!

Although this might seem like a
massive limitation from a C/C++
developer’s perspective, the
absence of macros is completely
unnoticed by your average Pascal
developer. In the same way, most
C/C++ programmers don’t miss set
operations and nested procedures
– they’d only miss them if they
were familiar with Pascal. It’s all a
question of what you’re used to.

Incidentally, if you really do miss
macro pre-processing, you can
always run your Pascal source
code through a pre-processor
(such as CPP.EXE, part of the
Borland C++ compiler package)
before compilation.

Another feature which C++
developers will miss is the lack of
implicit constructors and destruc-
tors. In C++, you can instantiate an
object simply by declaring it as a
global variable, in which case its
constructor will be called before
WinMain is executed and its destruc-
tor called when the program
terminates. Alternatively, you can
declare an object as an automatic
variable inside a routine, causing
the constructor and destructor to
be called ‘behind the scenes’ when
the object goes in and out of scope.
This is certainly a neat feature of
C++, but again, you’ll find that
making implicit Create and Destroy
calls becomes perfectly natural
after a while.

One thing that C++ developers
will be familiar with is the idea of
exception handling. The Delphi
version of Object Pascal fully sup-
ports exception handling and you
can define your own exceptions to
cater for custom error situations
such as wrong password, too many
cooks processing broth and so
forth!

Portability Between
Win16 and Win32 Platforms:
Doing Things The Delphi Way
A moment ago, I mentioned the
lack of macro processing, and
therefore – by implication – the
lack of portability aids such as
message cracker macros. How,
then, is portability to be achieved?

The golden rule with Delphi
programming is to use the VCL
library wherever and whenever
possible. It’s the VCL application
framework which insulates your
application code from the specific
details of whichever platform
you’re targeting.

For example, suppose you
wanted to have some code which
was executed whenever a particu-
lar form was loaded. In conven-
tional API terms, you’d use the
WM_INITDIALOG message to perform

28 The Delphi Magazine Issue 3

such processing. Under Delphi,
you’d use the OnCreate event.
Similarly, imagine that you wanted
to arrange things so that, initially,
a list box appeared with the first
item in the list box selected. Again,
experienced Windows developers
would do this by sending a
LB_SETCURSEL message to the list
box control. Although it is possible
to do things this way with Delphi
(you can get the API window han-
dle of any windowed control from
its Handle property), it’s much bet-
ter to do things the Delphi way and
simply set the ItemIndex property
of the control to zero, like this:

MyListBox.ItemIndex := 0;

You’ll find that using the VCL
library is not only more portable
than hitting the API, but it also
results in source code that’s much
more readable and concise. This is
a point that I can’t emphasise
strongly enough – if you insist on
doing things the way you’ve always
done ’em, then you’ll end up
making a rod for your own back:
you’ll have a lot of grief when it
comes to moving your application
across to the 32-bit version of
Delphi!

How then, are you supposed to
find out which method to call in a
particular situation? The Delphi
on-line help documentation is,
frankly, nothing to write home
about. The Object Pascal and VCL
Reference Manuals are now
available, in Acrobat format for
free on CompuServe and in paper
at a small cost direct from Borland.

I’ve found that the best way of
getting round the shortcomings in
the documentation is to purchase
the source code to the VCL library
(of course, if you’ve bought the
Client/Server version of Delphi,
then you’ll already have this
source) and use a fast text-file
scanning program to search for
strings in the library source.

Personally, I use TS.EXE (Text
Search), a very fast search utility
that’s provided as part of the
Norton Utilities. TS can take a
wildcard file description on the
command line, allowing you to do
something like this:

TS *.PAS “LB_GETCOUNT”

You may have another favourite
tool, of course. Using this kind of
setup, it’s very easy to quickly
track down methods of interest.

For example, imagine that you
want to find out how many items
there are in a listbox – a pretty
obvious thing to wish to do! If you
use the on-line help to look at the
various methods and properties of
the TListBox class, you’ll be
disappointed: there’s nothing
obvious there. To count the
number of items, you actually have
to look at the Count sub-property of
the Items property of the listbox,
like this:

NumItems :=
 MyListBox.Items.Count;

This isn’t especially obvious for
the beginning Delphi developer.
However, if you have some
knowledge of the Windows API,
you can use the Norton Text Search
program (or similar) to rapidly
scan the source code for any
occurrence of LB_GETCOUNT, the
Windows message which must be
invoked at some point in order to
get hold of the wanted information.
You can then work your way back
up the VCL hierarchy until you’ve
got the needed method.

Of course, there will be times
when the API is the only way to do
some particular job. Fortunately,
Object Pascal does support
conditional compilation and you
could therefore do something like
this:

{$IFDEF WIN32}
— Win32 specifics go here —
{$ELSE}
— Win16 specifics go here —
{$ENDIF}

This is the approach used by the
developers of the VCL library. In
my opinion, it’s best to localise this
sort of thing inside a single unit
which presents a consistent, plat-
form-independent interface to the
outside world. That way, you only
need to modify one source file
when adding Win32 capabilities to
your application.

Porting C Code To Pascal
You’re not going to have much joy
in porting MFC code or OWL code
to Delphi because of the ompletely
different framework architectures.
However, if you’ve made a rigid
distinction between how your
application looks and what your
application does, then you should
be able to move quite a lot of code
across. To put this another way,
suppose you’re writing an engi-
neering program: you’d typically
use the application framework (be
it, MFC, OWL or VCL) to implement
the sexy user interface features of
your application, but the real nuts-
and-bolts number crunching code
should be completely divorced
from the user interface.

If you’ve abided by this sort of
approach, then you should be able
to port your low-level number
crunching code to Delphi by the
simple expedient of wrapping it up
into a DLL and calling the DLL from
your VCL front-end code [Dr Bob’s
HeadConv Delphi Expert, included
on the disk with this issue in
shareware form, can help you here
by creating a Delphi import unit
from the C header file. Editor].

Alternatively, there are a
number of tools around which will
help you translate C code into the
equivalent Pascal code. One of
these is CtoP from Knowledge
Software Limited. The program
doesn’t attempt to perform a 100%
conversion but does take care of
much of the spade-work for you.
It’s designed to take Unix System V
C as input and will produce Turbo
Pascal output. The program is
several years old now and doesn’t
know anything about recent
language extensions (either in C or
Pascal), but it does provide a useful
head start in converting a large
chunk of existing C code. The
shareware version is included on
the disk with this issue.

Dave Jewell is a freelance consult-
ant and programmer, specialising
in systems-level work under
Windows and DOS. You can
contact Dave on the internet as
djewell@cix.compulink.co.uk

September 1995 The Delphi Magazine 29

	Delphi for C Programmers
	Delphi for C++ Programmers
	Portability between Win 16 and Win 32 Platforms: Doing Things The Delphi Way
	Porting C code to Pascal

